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Perturbation of the normalized Laplacian matrix
for the prediction of missing links in real

networks
Roya Aliakbarisani, Abdorasoul Ghasemi, and M. Ángeles Serrano

Abstract—The problem of predicting missing links in real-world networks is an active and challenging research area in both science
and engineering. The goal is to model the process of link formation in a complex network based on its observed structure to unveil lost
or unseen interactions. In this paper, we use perturbation theory to develop a general link prediction procedure, called Laplacian
Perturbation Method (LPM), that relies on relevant structural information encoded in the normalized Laplacian matrix of the network.
We implement a general algorithm for our perturbation method valid for different Laplacian-based link prediction schemes that
successfully surpass the prediction accuracy of their standard non-perturbed versions in real-world and model networks. The
suggested LPM for link prediction also exhibits higher accuracy compared to other extensively used local and global state-of-the-art
techniques and, in particular, it outperform the Structural Perturbation Method (SPM), a popular procedure that perturbs the adjacency
matrix of a network for inferring missing links, in many real-world and in synthetic networks. Taken together, our results show that
perturbation methods can significantly improve Laplacian-based link prediction techniques, and feeds the debate on which
representation, Laplacian or adjacency, better represents structural information for link prediction tasks in networks.

Index Terms—complex networks, link prediction, perturbation theory, normalized Laplacian matrix

F

1 INTRODUCTION

Link prediction methods in complex networks [1] aim
at inferring missing or future links based on the observed
structure and node attributes. The benefit of improving net-
work reconstructions not only serves descriptive purposes
but can also have profound effects in understanding the
behavior of processes that run on networks, such as infor-
mation cascades [2], [3]. As a consequence, link prediction
techniques have been profusely used in different disciplines
for discovering unknown protein-protein interactions in bio-
logical networks, suggesting new friends in social networks,
proposing products in recommender systems, developing
transportation and telecommunication networks, and many
more. However, it is a challenging problem due to different
issues. For instance, the stochastic nature of link formation
processes imposes intrinsic upper bounds to link prediction
accuracy, generally far from the absolute maximum, in real-
world networks [4].

Most link prediction algorithms use the adjacency ma-
trix as a representation of the observed network structure.
Among them, local similarity-based link prediction meth-
ods [5] —such as the common neighbors index (CN) [6], the
Adamic Adar index (AA) [7], the resource allocation index
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(RA) [8], and the Cannistraci-Hebb index (CH) [9]— extract
required structural information about common neighbors
and node degrees from the adjacency matrix. In parallel,
global similarity-based link prediction methods that incor-
porate topological information about the whole network
for estimating the similarity between unconnected node
pairs [5] —such as the Structural Perturbation Method
(SPM) [10] and the Katz index [11]— and commmunity-
based methods for missing link prediction, such as the fast
probability block model (FBM) [12], also depend on the
adjacency matrix.

The Laplacian matrix gives an alternative representation
of graph structure, and due to its specific features, several
link prediction methods use it, or functions of it, as the
source of similarity indices between node pairs [13], [14],
[15]. Even if the Laplacian carries the same information
as the adjacency matrix, the graph Laplacian has different
properties and may fit better specific problems. For instance,
the determinant of the Laplacian matrix specifies the num-
ber of spanning trees in a network [16] and its eigenval-
ues reveal how well complex networks are connected [17]
and how fast they can spread information through their
nodes [18]. From a geometrical perspective, the Laplacian
matrix relates a network to its geometrical representation in
terms of a simplex [19].

In this paper, our main contribution is to introduce a
perturbative methodology that is able to improve Laplacian-
based state-of-the-art link prediction techniques. To this
end, we present the Laplacian perturbation method (LPM)
that uses perturbation theory on the graph normalized
Laplacian to predict missing links, inspired by previous
work that used perturbation on the adjacency matrix of a
graph [10]. The specific form of the selected normalization
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is not trivial but turns out to be crucial to achieve good
performance. We show how to obtain a perturbed version
of the graph normalized Laplacian and introduce a general
algorithm, that we name LPM algorithm for link prediction,
that employs it as the source of structural information for
inferring new links. Based on this algorithm, we propose
some specific LPM link prediction techniques as alternatives
to standard Laplacian-based methods. Experimental results
over model and real-world networks indicate that these
methods not only surpass their unperturbed counterparts
in terms of precision and accuracy but also have better
accuracy compared to other widely applied link prediction
schemes in model and real-world networks. Finally, we
observe positive correlations between the performance of
LPM link prediction techniques and structural properties of
model networks including degree heterogeneity and level
of clustering, suggesting that LPM is more advantageous
for identifying missing links in more complex structures.

The rest of this paper is organized as follows. Section 2
reviews previous work related to our research. Section 3 de-
scribes how to apply perturbation theory to the normalized
Laplacian of a graph and presents a general algorithm for
link prediction methods based on the perturbed Laplacian.
Section 4 introduces specific LPM link prediction methods
deploying the perturbed normalized Laplacian matrix to
formulate their similarity indices. In Section 5, the prediction
accuracy of the proposed LPM link prediction methods is
measured over model and real-world networks, and the
relations between LPM performance and specific structural
network features are investigated for a family of network
models. Finally, the paper is concluded in Section 6.

2 RELATED WORK

Link prediction is a challenging task and a diversity of
strategies have been developed using methods from several
scientific fields ranging from network science to machine
learning. In network science, link prediction models are
typically based on different graph proximity measures or
on generative random graph models [20], [21]. In machine
learning, schemes based on training graph neural networks
to classify potential links have been successfully developed
and some of them exhibit superior performance as com-
pared to traditional heuristic-based methods [22], [23]. Most
of these methods use the adjacency matrix to encode the
graph. In this paper, we focus instead on Laplacian-based
link prediction methods, some of which are described next.

2.1 Laplacian-based Link Prediction Methods

Consider an undirected unweighted network G = (V,E),
where V is the set of nodes and E is the set of links.
The Laplacian matrix corresponding to this network is an
N × N matrix L, where N = |V |, defined as L = D −A,
where A is the adjacency matrix of G with entries 1 or 0
depending on whether the corresponding pairs of nodes
are connected, and D is a diagonal matrix of its node
degrees [24]. Since L is not full rank, its rank is N − 1, we
use the Moore-Penrose inverse or pseudo-inverse approach
to compute its inversion denoted by L† [25]. As the graph
Laplacian, its pseudo-inverse carries interesting information

about network structure and processes. For example, the
effective resistance between node pairs can be computed via
L† by considering networks as electrical circuits [26], [27].
Also, one can use L† to compute the average number of
steps that a random walker traverses from a source node
to reach a destination and then go back to the source [13].
Finally, L† can be utilized to rank the nodes in a graph,
e.g., in topological centrality [28], or to compare different
networks in terms of structural robustness [29].

Furthermore, L† is a symmetric positive semidefinite
matrix, i.e, all its eigenvalues are non-negative, and as such
it is a graph kernel or Gram matrix G for a set of vectors
{x1,x2, ...,xN} [13]. That is, the elements of the Gram
matrix are the inner products of their corresponding node
vectors, Gij = xTi xj [30]. Therefore, L† is decomposable
as L† = UΛUT where Λ is a diagonal matrix of the
eigenvalues of L† sorted in decreasing order and U is
a column matrix of the corresponding eigenvectors. This
suggests that the column i of Λ1/2UT is the corresponding
node vector xi for node i. Consequently, one can interpret
the elements of L† as the similarity indices between the
corresponding node vectors in terms of inner product and
use them for link prediction [13]. The similarity function for
this link prediction method is formulated as

SPinv(i, j) = L†ij , (1)

where L†ij is element (i, j) of the graph Laplacian pseudo-
inverse.

Since L† contains the inner products of node vectors, it
is used by another link prediction method to evaluate the
similarity between node pairs via the cosine of the angles
between their vectors as [13]

SCos(i, j) =
L†ij√
L†iiL

†
jj

. (2)

L† also encodes the average path length between nodes
in a network. Let n(i, j) denote the average commute time
(ACT) between i and j, i.e., the average number of links that
a random walker located at i takes to reach j for the first
time and then go back to i. This quantity can be computed
by the pseudo-inverse of the graph Laplacian using [13]

n(i, j) = |E|
(
L†ii + L†jj − 2L†ij

)
, (3)

where |E| is the number of links in the network. Assum-
ing that the smaller the average commute time between
two nodes the higher their similarity, an ACT similarity
index [13] can be defined as

SACT (i, j) =
1

|E|
(
L†ii + L†jj − 2L†ij

) . (4)

Matrix-forest-based algorithm (MFA) [14], [15] is an-
other Laplacian-based link prediction method measuring
the similarity between two nodes in terms of relative forest
accessibility from one node to another, which is related to
the Laplacian matrix as

SMFA(i, j) =
[
(I + L)

−1
]
ij
, (5)
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where I is the identity matrix with the same dimension as
L. Consider F i as the number of all spanning forests rooted
at node i and F ij as the number of the spanning forests
rooted at i in which both nodes i and j has been assigned to
the same tree. The element (i, j) of (I + L)−1 is equivalent
to F ij/F i evaluating node similarity using the concept of
spanning trees.

Finally, we should note that some Laplacian-based link
prediction methods use various normalized versions of
the network Laplacian matrix [31]. The normalized Lapla-
cian matrix of a simple undirected unweighted network
is a scaled version of the columns and rows of L that is
more associated with the behavior of random walks [32].
There are different methods for normalizing the Lapla-
cian matrix but the symmetric normalized Laplacian [33],
L = D−1/2(D−A)D−1/2, is more useful for link prediction
as it is consistent with the fact that the similarity matrix cor-
responding to an undirected network must be symmetric.
The similarity measures presented above can be defined in
terms of this symmetric normalized Laplacian and, in this
work, we use it for the design and analysis of perturbed
Laplacian-based links prediction schemes.

2.2 Structural perturbation of the adjacency matrix
The idea of approximating the solution of a difficult prob-
lem as a deviation from a solvable simpler problem has
been extended to matrices [34], such that the eigenpairs
of a perturbed matrix can be approximated using those
of the unperturbed one. Let λi be the eigenvalues and xi
be the corresponding eigenvectors of matrix M. Consider
M̃ = M + ∆M as the perturbation of M, where ∆M
is a small perturbation matrix with the same dimension
as M. Based on perturbation theory, the eigenvalues and
eigenvectors of the perturbed matrix M̃ can be found by
correcting those of the unperturbed one as λi + ∆λi and
xi + ∆xi, respectively. The eigenvalues and eigenvectors of
the perturbed matrix fulfill the eigenfunction equation

(M + ∆M)(xi + ∆xi) = (λi + ∆λi)(xi + ∆xi). (6)

If we assume that the perturbation does not significantly
change the structure of the unperturbed matrix, the eigen-
vectors of M are unchanged by the perturbation, i.e.,
xi + ∆xi ≈ xi. Left-multiplying both sides of Eq. 6 by the
transposed of the eigenvectors xTi , keeping the first-order
terms and ignoring the higher-order ones yields ∆λi as

∆λi ≈
xTi ∆Mxi

xTi xi
. (7)

The first-order matrix perturbation method outlined
above can be used to characterize the structure of complex
networks [10]. In this case, matrix M is a representation of
the connectivity structure of a network and its eigenvectors
reflect structural feaures [35] that are assumed to remain
unchanged if the disturbance is weak.

Now, consider an observed network with a few missing
links Gobs(V,Eobs). Link prediction methods aim to find
the missing links of Gobs to build an inferred network
Ginf (V,Einf ) as an approximation of the complete network
G, where both Ginf and G have the same number of

links. The first-order matrix perturbation method can be
applied in combination with link prediction methods to
approximate the structural features of G given Gobs. To this
end, we randomly split the observed links into two disjoint
subsets Eobs = ER + ∆E. A small fraction of links ∆E is
considered as the disturbance and make the perturbation
graph ∆G, and the remaining links ER make a reduced
graph GR(V,ER). Then, matrix GR is perturbed by ∆G and
the resulting matrix is employed to formulate a similarity
index for missing link prediction and finding Ginf .

For instance, the structural perturbation-based link pre-
diction method SPM [10] chooses the adjacency matrix as
the structural representation of a network. Therefore, after
randomly splitting the links in Eobs into ER and ∆E, and
using the adjacency matrix AR as GR and ∆A as ∆G, it
perturbs AR by ∆A. In other words, the perturbed matrix
ÃR = AR + ∆A can be approximated as

ÃR ≈
N∑
i=1

(λi + ∆λi)xix
T
i , (8)

where λi and xi are the eigenvalues and eigenvectors of
AR. Under the hypothesis that small random perturbations
do not change the structural features of the network, the
values in ÃR corresponding to unconnected node pairs
can be used to measure similarity scores for unobserved
pairs. The procedure is repeated many times for different
realizations of the perturbation set and the final perturbed
matrix Ã is obtained as an average. Finally, SPM ranks its
values in descending order so as to find the missing links
and generates Ginf by adding to Gobs as many links at
the top of the list as needed to supplement unobserved
connections [10].

3 PERTURBATION OF THE NORMALIZED LAPLA-
CIAN FOR THE PREDICTION OF MISSING LINKS

First, we describe how to apply the first-order matrix per-
turbation method to the normalized Laplacian and second,
we propose a general algorithm for predicting missing links
in complex networks based on the perturbed Laplacian that
can be leveraged by different Laplacian-based link predic-
tion techniques.

3.1 Laplacian perturbation method

We consider the graph normalized Laplacian as the selected
structural representation of a network and use it for link
prediction. We apply the structural perturbation method
to obtain L̃ with the assumptions that a group of links
is predictable if removing them has only a small effect
on the network’s structural features and independent per-
turbations produce strongly correlated effects so that the
perturbation adds useful structural information to Gobs.
Consequently, the resulting matrix is employed to formulate
link prediction similarity indices.

To obtaining L̃, we randomly split the observed links of
a network into the two disjoint subsets Eobs = ER + ∆E,
where a small fraction ρ of links is assigned to ∆E. We
compute the normalized Laplacian for GR and ∆G as
LR = D

−1/2
R (DR − AR)D

−1/2
R and ∆L = D

−1/2
∆ (D∆ −
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∆A)D
−1/2
∆ respectively, where DR and D∆ are the diago-

nal matrices of node degrees in GR and ∆G. See Supple-
mentary Material for more technical and practical informa-
tion about the selected normalization protocol. Then, we ap-
proximate the perturbed Laplacian L̃R as L̃R = LR + ∆L.
We estimate the eigenvalues of L̃R as λi+∆λi where λi are
the eigenvalues of LR and ∆λi are computed using Eq. 7
by replacing ∆M with ∆L and considering xi as the eigen-
vectors of LR. Finally, by keeping fixed the eigenvectors of
LR before and after perturbation, L̃R is computed as

L̃R ≈
N∑
i=1

(λi + ∆λi)xix
T
i . (9)

The resulting matrix L̃ is obtained by averaging L̃R in Eq. 9
over many realizations of the perturbation set, and it can be
used to design Laplacian-based similarity indices as tools
for the prediction of missing links. In the following section,
we propose a general algorithm for perturbed Laplacian-
based link prediction schemes.

Note that the correction to the eigenvalues ∆λi ≈
xT
i ∆Lxi

xT
i xi

is non-negative. It is due to the fact that ∆L is
positive semidefinite, and therefore the numerator xi∆LxTi
will be non-negative. Furthermore, the denominator is al-
ways equal to one when the eigenvectors are normalized to
unit length. On the other hand, the eigenvalues of LR, λi,
fulfill λi ≥ 0. Hence, the eigenvalues of L̃R, λi + ∆λi, and
the eigenvalues of its pseudo-inverse L̃†R, 1

λi+∆λi
, are also

non-negative. It is also true for the average matrix L̃ and for
its pseudo-inverse L̃†. As a result, the symmetric positive
semidefinite matrix L̃† is a Gram matrix and its elements are
implicitly the inner product of node pairs feature vectors.

3.2 A general LPM algorithm for Laplacian-based link
prediction

In the previous section, we described the application of the
first-order structural perturbation method to the normalized
Laplacian, that we name the Laplacian perturbation method
LPM. In Algorithm. 1, we give a general algorithm for the
prediction of missing links based on LPM.

Algorithm 1 LPM algorithm for link prediction
Input: An observed network Gobs(V,Eobs) and a similarity index generally
defined as SLPM = f(L̃)
Output: A list of predicted links
1: L̃← 0 . It keeps the average of L̃R

2: for iter ← 1 to n do
3: Randomly assign a fraction ρ of the links in Eobs to ∆E and constitute

∆G(V,∆E) with adjacency matrix ∆A
4: ER = Eobs−∆E and constituteGR(V,ER) with adjacency matrix AR

5: ∆L = D
−1/2
∆ (D∆ −∆A)D

−1/2
∆

6: LR = D
−1/2
R (DR −AR)D

−1/2
R

7: Compute the eigenpairs of LR: (λi,xi)

8: ∆λi ≈
xT
i ∆Lxi

xT
i

xi

9: L̃R ≈
∑N

i=1(λi + ∆λi)xix
T
i

10: L̃← L̃ + L̃R

11: L̃← L̃/n
12: Measure the similarity between node pairs using the resulting L̃ and the

input similarity index SLPM = f(L̃)
13: Rank the unconnected node pairs (i, j) based on their similarity score

SLPM (i, j) in descending order
14: return the links at the top of the ranked list as the predicted links

This algorithm takes an observed network Gobs and
a generally defined similarity index SLPM , which is a
function of the average perturbed normalized Laplacian of
Gobs, and returns a list of the predicted links. Steps 2 to
10 of Algorithm 1 are iterated n times with independent
perturbation sets ∆E to obtain an ensemble of L̃R. Its
average over realizations, computed in step 11 and denoted
as L̃, is used by the similarity index SLPM in step 12
to assign each unconnected node pair a similarity value.
Finally, unobserved links are ranked in descending order
according to their similarity values to infer the missing links.
Note that calculating a similarity index for every L̃R in the
resulting ensemble and reporting the average accuracy will
generally give lower performance as verified in empirical
results. Hence, LPM is general enough to be applied to
different Laplacian-based link prediction methods even if
they take different similarity functions f(L̃) as input.

4 LPM LINK PREDICTION TECHNIQUES

In this section, we introduce specific LPM link prediction
schemes that employ L̃ as the structural information source
for inferring new links. To this end, we start from the
previously described Laplacian-based link prediction meth-
ods Pinv, Cos, ACT, and MFA and adapt them to exploit
perturbation theory in their procedures. All the proposed
methods follow Algorithm 1 even though each takes its own
specific similarity index as input.

4.1 Pinv-Per method

The perturbed version of the Pinv link prediction method,
see Eq. (1), is called Pinv-Per. We first compute L̃ from
the observed network by following the steps 1 to 11 of
Algorithm 1. Therefore, the similarity index of the Pinv-Per
can be formulated as

SPinv−Per(i, j) = L̃†ij , (10)

where L̃†ij is the element (i, j) of the pseudo-inverse of the
average perturbed normalized Laplacian matrix.

4.2 Cos-Per method

The perturbed version of the Cos link prediction method is
called Cos-Per and as its unperturbed counterpart calculates
the cosine of the angle between node pairs feature vectors,
in this case using L̃†. Therefore, the similarity index of this
method is defined as

SCos−Per(i, j) =
L̃†ij√
L̃†iiL̃

†
jj

. (11)

4.3 MFA-Per method

Based on the regularized Laplacian kernel [36], that is a
general form of MFA formulated as (I +αL)−1, we suggest
a perturbation based link prediction method applying L̃ in
its similarity index as

SMFA−Per(i, j) = [(I + αL̃)−1]ij (12)
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In contrast to the unperturbed MFA, the elements of the
MFA-Per do not reflect the relative forest accessibility be-
tween node pairs. However, when α = 1, (I+L̃)−1 is closely
related to L̃

†
such that they both have the same eigen-

vectors and their eigenvalues are related by λi
MFA−Per =

λi
P inv−Per/1 + λi

P inv−Per. We have discussed above that
λi
P inv−Per, that correspond to the eigenvalues of the per-

turbed normalized Laplacian pseudo-inverse, are all non-
negative so it will also be true for λi

MFA−Per. Therefore,
(I + L̃)−1 is again a Gram matrix. Indeed, similar to the
Pinv-Per and Cos-Per, the elements of the MFA-Per can be
seen as the inner product of node feature vectors. However,
we should note that each method has a different set of node
feature vectors.

4.4 ACT-Per method

The average commute time between two nodes of a network
formulated in Eq. 3 is also computable via the pseudo-
inverse of the network normalized Laplacian matrix L† as

n(i, j) = |E|(L
†
ii

di
+
L†jj
dj
− 2L†ij√

didj
), where di is the degree of

node i [37]. Then, the similarity between node pairs in the
perturbation approach can be estimated as

SACT−Per(i, j) =
1

|E|( L̃
†
ii

d̃i
+
L̃†jj
d̃j
− 2L̃†ij√

d̃id̃j
)
, (13)

where d̃i is the degree of node i in the graph corresponding
to L̃ that can be approximated by the degree di in the
observed network.

Unlike Pinv-Per, Cos-Per, and MFA-Per that measure the
similarity between node pairs based on the inner product of
node feature vectors, we will prove that ACT-Per computes
the reciprocal of the Euclidean distance between node pairs
to gauge how similar the nodes in the pair are. The average
commute time between two nodes in the graph associated
to the perturbed Laplacian is given by [37]

n(i, j) = |E|(ei − ej)
T D̃

−1
2 L̃†D̃

−1
2 (ei − ej), (14)

where D̃ is the diagonal matrix of node degrees and ei is
the ith column of the identity matrix of size N . By replacing
L̃† with its eigenvalue decomposition VΣVT , where Σ is
a diagonal matrix of the eigenvalues sorted in decreasing
order and V is a column matrix of the corresponding
eigenvectors of L̃†, and considering yi = Σ

1
2 VT D̃

−1
2 ei,

Eq. 14 can be written as

n(i, j) = |E|(yi − yj)
T (yi − yj) = |E|‖(yi − yj)‖2. (15)

Therefore, computing the average commute time between
node pairs is equivalent to assigning each node i an ex-
tracted feature vector yi and calculating the Euclidean dis-
tance between them. The smaller the Euclidean distance
between two nodes, the more similar the nodes according
to the ACT-Per similarity index.

4.5 Cos-CN method

Finally, we propose to combine the global structural infor-
mation included in L̃† with the local information from node

degrees and common neighbors to design a similarity index
called Cos-CN that is computed as

SCos−CN (i, j) =∑
z∈(Γ(i)∩Γ(j))

1

|Γ(z)|
[SCos−Per(i, z) + SCos−Per(j, z)], (16)

where Γ(i) is the set of neighbors of node i and |.| is
the cardinality of a set. To measure the similarity between
two nodes, the Cos-CN index calculates a weighted sum
of Cos-Per similarity values between the given nodes and
their common neighbors computed using Eq. 11 such that it
assigns more weights to less connected common neighbors.

5 EXPERIMENTAL RESULTS

We have used LPM link prediction techniques described
above to predict missing links in model and real-worlds net-
works. In all the experimental tests, we randomly separated
a small fraction q of links from the complete network to act
as a probe set simulating missing links. The remaining set
acts as training set and constituteGobs. We then measure the
link prediction methods performance in terms of the area
under the receiver operating characteristic curve (AUC) [38]
and the precision [39].

The AUC evaluates accuracy according to the entire list
of unobserved links sorted in decreasing order of their
similarity scores. It computes the probability that a link
prediction technique assigns a higher similarity score to the
corresponding node pair of a randomly selected missing
link (i.e., a link in the probe set) than that of a randomly
selected non-existing link (i.e., a link in U − E, where U
is the universal set of all possible links and E is the set of
links in the complete network). If in n independent pairwise
comparisons of randomly chosen missing and non-existing
links, n′ times the missing link has higher score and n′′ times
the two links have the same scores, the AUC value will be

AUC =
n′ + 0.5n′′

n
(17)

On the other hand, precision focuses only on the links
at the top of the ranking with highest similarity scores.
Therefore, if a set of L links at the top of the ordered list
contains Lr missing links, the precision will be equal to
Lr/L.

Once the observed graphs are obtained, the perturbation
sets ∆E are randomly constructed by separating a fraction
ρ = 0.1 of the links from Gobs. The perturbation procedure
is done n = 10 times over Gobs with independent sets ∆E,
and parameter α in MFA-Per is set to 1. In addition, the
largest connected component is considered in networks with
more than one component, and the generated training sets
contain no isolated nodes.

5.1 Network Models
We first consider synthetic networks produced by well-
known probabilistic network models including the S1

model [40], generating maximally random networks with
given level of clustering and sequence of expected degrees,
the degree-corrected stochastic block model (dc-SBM) [41],
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Fig. 1. The average AUC and precision of LPM and the corresponding unperturbed Laplacian-based link prediction methods as a function of
the fraction of removed links q for the S1 model. Parameter β controlling the level of clustering is increased from up to down and the power-law
degree distribution exponent γ is incremented from left to right. For almost all γ and β, LPM link prediction methods (except ACT-Per) defeat their
unperturbed counterparts. They also exhibit higher AUC than SPM, and Cos-CN surpasses SPM in terms of precision. Moreover, the precision
improvements achieved by LPM link prediction techniques are greater in more complex S1 networks containing larger hubs (smaller γ) and higher
level of clustering (larger β).

a block model that generates random networks with het-
erogeneous node degrees and community structure and,
finally, the soft configuration model (sCM) [42], generat-
ing maximally random networks with respect to a given
expected degree sequence. See Supplementary Material for
more details about these network models.

In the following experiments, for every ensemble charac-
terized by specific model parameters, we have generated 10
different networks with N = 300 nodes and average degree
of 〈k〉 = 10. Then for every network and each value of q,
we have constructed 10 disjoint training and probe sets on

which the link prediction methods were applied. In dc-SBM
networks, parameter λ making a balance between random
and group structures has been fixed to λ = 0.5.

In Fig. 1, we show the performance of the different
LPM link prediction methods in synthetic networks of the
S1 ensemble compared to the unperturbed versions as a
function of the fraction of removed links and for different
values of the parameters of the models. The S1 model is a
geometric network model [43] that gives a very good de-
scription of structural connectivity in real-world networks
including typical features such as sparsity, the small-world
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Fig. 2. The average AUC and precision of LPM and the corresponding unperturbed Laplacian-based link prediction methods as a function of the
fraction of removed links q for the dc-SBM model. The number of equiprobable blocks Nb is increased from up to down and the power-law degree
distribution exponent γ is incremented from left to right. For every γ and Nb, LPM link prediction methods (except ACT-Per) defeat their unperturbed
counterparts. They also exhibit higher AUC values than SPM, and Pinv-Per and Cos-per outperform SPM with regard to precision. Moreover, for a
fixed Nb, the increas of γ decreases the performance gaps between the best LPM link prediction method and SPM.

property, heterogeneous degree distributions, and high lev-
els of clustering [44]. The combination of these models with
statistical inference techniques allow to obtain maps of real
networks in the hyperbolic plane where distances inform
about the likelihood of connections [45]. Beyond visual-
ization, these representations can be exploited for efficient
navigation [46], [47], for uncovering patterns such as self-
similarity [40], [47], [48], [49] and communities of strongly
interacting nodes [50], [51], [52], [53], and to sustain a
renormalization procedure that brings to light the multiscale
nature of networks [47].

Fig. 1 proves that the perturbed link prediction methods
are very efficient in S1 synthetic networks. LPM link pre-
diction methods Pinv-Per, Cos-Per and MFA-Per almost al-
ways surpass their unperturbed counterparts both in terms
of AUC and precision, whereas ACT-Per usually exhibits
lower AUC and precision than ACT. It is also clear from
Fig. 1(a-f) that LPM link prediction techniques, except ACT-
Per and Cos-CN, have higher AUC than SPM. By varying
the parameters of the model—γ, that controls the exponent
in the power-law degree distribution, and β, that controls
the level of clustering so that the higher the β the higher
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TABLE 1
Performance of link prediction methods measured by AUC in a set of real-world networks. The probe sets contains a q = 0.1 fraction of the links in
the complete networks and the presented results are the average of 10 independent runs. For LPM link prediction techniques, AUC values of their

unperturbed counterparts are reported in the parenthesis.

Networks CN RA AA CH FBM SPM Pinv-Per Cos-Per MFA-Per Cos-CN

Karate 0.711 0.762 0.760 0.563 0.806 0.760 0.809 (0.747) 0.803 (0.721) 0.840 (0.752) 0.768
Lesmis 0.95 0.96 0.96 0.904 0.936 0.945 0.942 (0.887) 0.94 (0.886) 0.948 (0.92) 0.96

Polbooks 0.90 0.91 0.909 0.802 0.899 0.901 0.883 (0.869) 0.894 (0.894) 0.927 (0.906) 0.911
ACM2009 0.784 0.789 0.786 0.784 0.772 0.777 0.777 (0.772) 0.776 (0.682) 0.789 (0.775) 0.788

WTW 0.811 0.858 0.854 0.699 0.901 0.819 0.901 (0.767) 0.896 (0.666) 0.874 (0.792) 0.867
Congress vote 0.763 0.772 0.772 0.564 0.843 0.785 0.864 (0.786) 0.862 (0.716) 0.811 (0.817) 0.771

USAir 0.958 0.974 0.969 0.937 0.951 0.944 0.968 (0.907) 0.968 (0.959) 0.962 (0.940) 0.974
Netscience 0.974 0.977 0.977 0.825 0.960 0.972 0.983 (0.946) 0.984 (0.967) 0.985 (0.973) 0.977

Email 0.856 0.858 0.858 0.704 0.891 0.896 0.928 (0.908) 0.928 (0.908) 0.916 (0.919) 0.857
Neural 0.850 0.871 0.866 0.769 0.883 0.892 0.859 (0.861) 0.862(0.862) 0.910 (0.873) 0.874

Infectious 0.943 0.948 0.947 0.863 0.956 0.944 0.956 (0.913) 0.961 (0.946) 0.960 (0.960) 0.948
Metabolic 0.921 0.959 0.954 0.871 0.914 0.932 0.938 (0.889) 0.941 (0.891) 0.952 (0.905) 0.959
Polblogs 0.926 0.930 0.929 0.902 0.935 0.934 0.945 (0.892) 0.945 (0.928) 0.925 (0.907) 0.932

the level of clustering—keeping values in the typical range
observed in real networks, we analize the dependency of
LPM link prediction methods on the structural features of S1

synthetic networks. By fixing β and increasing γ in the rows
of Fig. 1(a-f) from left to right, the AUC gap between the best
LPM link prediction technique and SPM is approximately
invariant, but it is decreased by growing β in the columns
of Fig. 1(a-f) from up to down for a fixed γ.

In terms of precision, Fig. 1(g-l) show that Cos-CN stands
out as the best link prediction technique. When β is constant,
the precision gap between Cos-CN and SPM is larger for the
S1 networks with more heterogeneous degree distribution,
while the two precision curves become closer together as
the heterogeneity of node degrees is decreased by increasing
γ. In addition, for a constant γ, the precision improvement
achieved by the Cos-CN is greater for networks with higher
clustering coefficient, that is larger value of β, as shown
in the columns of Fig. 1(g-l). That is to say, applying LPM
for the prediction of missing links gives better perfor-
mance in more complex S1 networks containing larger hubs
and higher level of clustering. See Supplementary Material
Figs. S7 and S8 displaying extensive comparisons of the
methods performance in S1 networks for more values of
parameter β.

Analogous results are displayed in Fig. 2 for synthetic
dc-SBM networks. Again, the results highlight that perturb-
ing the normalized Laplacian give rise to Pinv-Per, Cos-
Per and MFA-Per methods with higher AUC and precision
compared to their unperturbed counterparts. Nevertheless,
both ACT and ACT-Per exhibit similar performance in these
networks, in agreement with the behaviours observed in S1

networks. Also in accordance with the results for S1, LPM
link prediction techniques, excluding ACT-Per and Cos-CN,
defeat SPM with respect to AUC in dc-SBM, see Fig. 2(a-
f). Moreover, we observe from Fig. 2(g-l) that Pinv-Per and
Cos-Per surpass SPM in terms of precision. As presented by
the rows of Fig. 2 from left to right, for a fixed number of
blocks Nb, the AUC and precision gaps between the best
LPM link prediction method and SPM are decreased with

the increase of γ. Moreover, as anticipated, for a constant γ
the AUC and precision gaps are not significantly changed
with the increase of Nb, as shown by plots in the columns of
Fig. 2 from up to down. It seems then that varying the local
parameter Nb could not significantly affect the performance
of LPM link prediction techniques, which are global. Figs. S9
and S10 in the Supplementary Material show results in
synthetic dc-SBM networks for more values of parameter
Nb.

The performance of the different LPM link prediction
methods for synthetic networks produced by the sCM
model is shown in Fig. S6 of the Supplementary Material
for different values of the fraction of missing links and for
exponents γ of the power-law degree distribution varied in
the range of [2, 3]. Fig. S6 shows that Pinv-Per, Cos-Per and
MFA-Per always surpass their unperturbed counterparts
in terms of AUC and precision, while, ACT and ACT-
per methods yield almost similar performance. The experi-
ments also reveal that employing the perturbed normalized
Laplacian matrices as the structural representations of sCM
networks provides more accurate lists of predicted links as
the Pinv-Per and Cos-Per could always outperform SPM in
terms of both AUC and precision. We also observe that in
sCM networks with more heterogeneous degree distribution
(smaller values of γ), the performance gaps between LPM
link prediction techniques and SPM are larger, while they
are getting smaller as γ is increased.

According to the results for the synthetic networks,
perturbing the normalized Laplacian matrix is beneficial to
improve the performance of inner-product-based similarity
indices—Pinv-Per, Cos-Per and MFA-Per.

Finally, Table. 1 in Supplementary Material compares
AUC values of LPM link prediction methods, excluding
ACT-Per which does not show good performance, with
six widely applied link prediction schemes in the network
models, when q = 0.1. Four of these schemes CN, AA,
RA and CH extract local structural properties, while two of
them SPM and FBM exploit global connectivity patterns for
the prediction of missing link, see Supplementary Material



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 9

0.00 0.05 0.10 0.15 0.20 0.25
0.5

0.6

0.7

0.8

0.9

1.0
A

U
C

(a)    Karate

ACT

Cos Cos-Per
Pinv Pinv-Per

MFA MFA-Per

SPM Cos-CN
ACT-Per

0.00 0.05 0.10 0.15 0.20 0.25
0.80

0.85

0.90

0.95

(b)   Lesmis

0.00 0.05 0.10 0.15 0.20 0.25

0.7

0.8

0.9

(c)     Polbooks

0.00 0.05 0.10 0.15 0.20 0.25

0.65

0.70

0.75

0.80

A
U

C

(d)   ACM2009

0.00 0.05 0.10 0.15 0.20 0.25
0.6

0.7

0.8

0.9

(e)   WTW

0.00 0.05 0.10 0.15 0.20 0.25

0.7

0.8

0.9

(f)   Congress Vote

0.00 0.05 0.10 0.15 0.20 0.25

0.90

0.95

Fraction of Removed Links

A
U

C

(g)   USAir

0.00 0.05 0.10 0.15 0.20 0.25

0.8

0.9

1.0

Fraction of Removed Links

(h)   Netscience

0.00 0.05 0.10 0.15 0.20 0.25
0.80

0.85

0.90

0.95

Fraction of Removed Links

(i)   Email

Fig. 3. AUC values of LPM and the corresponding unperturbed Laplacian-based link prediction methods as a function of the fraction of removed links
q. For each real network and each value of q, we generated 10 different training and probe sets on which we applied these methods and computed
the average AUC values. LPM link prediction methods (except ACT-Per) typically acheive higher AUC than their unperturbed counterparts, and
SPM is also defeated by one or more LPM link prediction schemes.

for details. The results indicate that at least one LPM link
prediction method has higher accuracy than state-of-the-art
widely-applied link prediction schemes in model networks.

5.2 Real-world Networks
We assess the performance of LPM link prediction tech-
niques in a collection of real-world complex networks from
different domains, including social interactions between
the members of a university karate club [54] (Karate),
concurrences of characters in the novel Les Misérables
by Victor Hugo [55] (Lesmis), co-purchasing of political
books on Amazon [56] (Polbooks), face to face contacts
between the participants of the ACM Hypertext 2009 Con-
ference [57] (ACM2009), international trade network in
2013 [52] (WTW), politicians that mention one another in
their speaking in the United States Congress [58] (Congress
Vote), the US Air transportation network [59] (USAir), co-
authorship in the field of network science [60] (Netscience)
and email communication at the university Rovira i Virgili
in Tarragona, Spain [61] (Email). More real-world networks
are reported in Table 1 and Supplementary Material Table1,
Figs. S11 and S12. A brief description of these networks is

provided in Supplementary Material. For all networks, we
consider undirected unweighted versions restricted to the
giant connected component. Their basic topological charac-
teristics can be found in Supplementary Material Table 2.

In complete agreement with results above for network
models, Pinv-Per, Cos-per and MFA-Per typically exhibit
higher AUC values than their unperturbed versions Pinv,
Cos and MFA in real-world networks, as depicted in Fig. 3
and Fig. S11 in Supplementary Material. In addition, ACT-
Per usually shows lower AUC than ACT, which once again
confirms that perturbing the network normalized Laplacian
can not improve the performance of distance-based simi-
larity indices. On the other hand, it is apparent from these
figures that SPM is beaten in terms of accuracy by one or
more LPM link prediction techniques. Table 1 also compare
the AUC values of the proposed perturbed schemes with
the aforementioned state-of-the-art local and global link
prediction methods, when the fraction of missing links q is
set to 0.1. The results indicate that in all real-world networks
at least one LPM link prediction scheme is at least as good
as or better than them.

In terms of precision, the results also agree with those
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Fig. 4. Precision values of LPM and the corresponding unperturbed Laplacian-based link prediction methods as a function of the fraction of removed
links q. For each real network and each value of q, we generated 10 different training and probe sets on which we applied link prediction methods
and computed the average precision. LPM link prediction methods (except ACT-Per) usually outperform their unperturbed counterparts. Moreover,
Cos-CN typically shows higher precision than other LPM link prediction schemes, and it also surpasses SPM in some of the real-networks.

obtained for model networks. The perturbed normalized
Laplacian-based link prediction methods, excluding ACT-
Per, typically outperform their unperturbed counterparts in
all the analyzed real-world networks as shown in Fig. 4
and Fig. S12 in Supplementary Material. In addition, similar
to the results achieved for the S1 model, that reflect the
impact of properties observed in real-world networks such
as heterogeneous degree distributions and strong clustering,
Cos-CN usually has the best precision in real networks as
compared to other LPM link prediction schemes, and it is
also able to outperform SPM in some of them, see Fig. 4 and
Fig. S12 in the Supplementary Material.

6 CONCLUSIONS

This paper presents a novel link prediction scheme that
perturbs the normalized Laplacian of an observed net-
work with the intention of extracting hidden structural
information encoded in it to obtaining more accurate link
prediction methods. We introduced a perturbative algo-
rithm valid for any Laplacian-based link prediction method
and found that perturbative Laplacian-based link predic-
tion techniques outperform their unperturbed counterparts

when similarity indices are based on the inner product of
node feature vector —methods Pinv-Per, Cos-Per and MFA-
Per. In contrast, methods that rely on Euclidean distances
between nodes —ACT-Per— may not benefit from LPM. We
measured performance in terms of AUC and precision and
our results hold both for synthetic networks generated by
realistic models and real-world networks.

Beyond Laplacian-based link prediction methods, we
have also found that LPM link prediction techniques can
also outperform a set of state-of-the-art local and global
link prediction methods based on the adjacency matrix.
In particular, we compared our approach with the SPM
link prediction method that perturbs the adjacency matrix
to infer new links. The results indicate that LPM exhibits
higher AUC and precision than SPM in synthetic networks
generated by realistic models. We also showed that, as the
synthetic networks become more complex by increasing
their degree heterogeneity and clustering coefficient, our
methods manage to beat SPM with a larger precision gap.

In real-world networks, experimental results demon-
strate that LPM link prediction schemes outperform SPM
in terms of AUC. However, SPM achieves higher precision
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than LPM in some real networks. This feeds the question of
which representation, Laplacian or adjacency or a combina-
tion of the two, better represents structural information to
achieve the best performance in terms of precision when
predicting missing links in real-world networks. Also, it
will be necessary to investigate how the choice depends on
specific topological features of the networks under consid-
eration. The questions are challenging and other algorithms
that rely on spectral properties of graphs, such as spectral
clustering for community detection [62], face the same prob-
lem when dealing with strongly heterogeneous networks,
for which different choices of the representation matrix give
rise to disparate inference. As a result of our work, we
hope to have increased awareness about the importance of
the choice of the representation matrix for link prediction
algorithms and about the need of further research in this
direction.

Finally, another interesting avenue for future work
would be the design of new link prediction strategies in
complex networks based on machine learning techniques
that take as input the node feature vectors encoded by the
perturbed normalized Laplacian.
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[10] L. Lü, L. Pan, T. Zhou, Y.-C. Zhang, and H. E. Stanley, “Toward
link predictability of complex networks,” Proceedings of the National
Academy of Sciences, vol. 112, no. 8, pp. 2325–2330, 2015.

[11] L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, vol. 18, no. 1, pp. 39–43, 1953.

[12] Z. Liu, J.-L. He, K. Kapoor, and J. Srivastava, “Correlations be-
tween community structure and link formation in complex net-
works,” PLoS ONE, vol. 8, no. 9, p. e72908, 2013.

[13] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens, “Random-
walk computation of similarities between nodes of a graph with
application to collaborative recommendation,” IEEE Transactions
on Knowledge and Data Engineering, vol. 19, no. 3, pp. 355–369, 2007.

[14] P. Y. Chebotarev and E. V. Shamis, “The matrix-forest theorem and
measuring relations in small social group,” Automation and Remote
Control, vol. 58, no. 9, pp. 1505–1514, 1997.

[15] ——, “On proximity measures for graph vertices,” Automation and
Remote Control, vol. 59, no. 10, pp. 1443–1459, 1998.

[16] G. Kirchhoff, “Ueber die Auflösung der Gleichungen, auf welche
man bei der Untersuchung der linearen Vertheilung galvanischer
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“Consistencies and inconsistencies between model selection and
link prediction in networks,” Physical Review E, vol. 97, no. 6, p.
062316, 2018.

[22] T. N. Kipf and M. Welling, “Variational graph auto-encoders,”
arXiv preprint arXiv:1611.07308, 2016.

[23] M. Zhang and Y. Chen, “Link prediction based on graph neural
networks,” in Proceedings of the 32nd International Conference on
Neural Information Processing Systems. Montréal, Canada: Curran
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[43] M. Boguñá, I. Bonamassa, M. De Domenico, S. Havlin, D. Kri-
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S.1 BASELINE LINK PREDICTION METHODS

In this section, we review five extensively used local and global state-of-the-art link prediction schemes to which we have
compared the performance of our suggested link prediction methods employing the proposed general link prediction
algorithm called Laplacian perturbation method (LPM).

S.1.1 Common Neighbors (CN)

The simplest local link prediction method CN [S1] measures the similarity between unconnected node pairs by counting
the number of neighbors they have in common as

SCN (i, j) = |Γ(i) ∩ Γ(j)|, (S1)

where Γ(i) is the set of the neighobrs of node i and |.| refers to the cardinality of a set.

S.1.2 Resource Allocation (RA) & Adamic Adar (AA)

Two improved versions of the CN index assigning higher weight values to less-connected common neighbors using the
reciprocal of their degrees or the logarithm of these values are called RA [S2] and AA [S3] respectively, and formulated as

SRA(i, j) =
∑

z∈(Γ(i)∩Γ(j))

1

|Γ(z)|
, (S2)

SAA(i, j) =
∑

z∈(Γ(i)∩Γ(j))

1

log|Γ(z)|
. (S3)

S.1.3 Cannistraci-Hebb (CH) network automata model

The CH index [S4] is a local similarity-based link prediction technique that not only considers the common neighbors
of unconnected nodes, but also the number of the links between these neighbors called local-community to gauge the
similarity of node pairs. It is computed as

SCH(i, j) =
∑

z∈(Γ(i)∩Γ(j))

|φ(z)|
|Γ(z)|

, (S4)

where φ(z) = (Γ(i)∩Γ(j))∩Γ(z), i.e., it is the intersection of the common neighbors of node pair (i, j) with the neighbors
of node z.

S.1.4 Fast probability Block Model (FBM)

The global similarity-based method FBM [S5] takes some subsets from all possible node partitions and computes the
similarity between node pairs based on the group assignment of the nodes. In this procedure, all nodes are first randomly
separated into two blocks, and the nodes in the maximum clique of every block are repeatedly selected and removed from
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the block to form a group for the current partition. The remaining nodes not belonging to any group also set up another
group together. Finally, the FBM similarity indices of node pairs are computed relying on their group assignment as

SFBM (i, j) =
1

|P |
∑
p∈P

F (gi, gj), (S5)

where P is the set of selected partitions, gi is the group assignment of node i within partition p and function F is defined
as

F (α, β) =


rα

2rα − lα
, α = β,

lαβ
rαβ + lαβ

, α 6= β,
(S6)

where lα and rα are the number of links and the maximum number of possible links between the nodes in group α,
respectively. lαβ and rαβ are also the number of links between the nodes in groups α and β and the maximum number of
possible links among them, respectively.

S.2 THE NORMALIZATION STEP IN LPM ALGORITHM

Fig. S1 highlights the importance of the normalization step in the general LPM algorithm for Laplacian-based link
prediction presented in the main text. It compares the average performance of LPM link prediction methods versus the
same perturbative Laplacian-based ones but using the unnormalized version of the graph Laplacian, distinguished from
the proposed schemes by the suffix -UN. This figure reveals that the normalization step of LPM method is necessary for
good performance.
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Fig. S1: The average AUC and precision of LPM link prediction methods applying the symmetric normalized Laplacian
matrix versus their corresponding perturbative Laplacian-based counterparts employing the unnormalized version of the
graph Laplacian, which are identified by the suffix -UN, as a function of the fraction of removed link q.

In LPM algorithm, after randomly division of an observed network into remaining (reduced) graphGR and perturbation
one ∆G, the Laplacian matrices of the resulting graphs LR = DR −AR and ∆L = D∆ −∆A, where AR and DR are the
adjacency and degree matrices of GR and ∆A and D∆ are those of ∆G, are normalized by their own degree matrices i.e.,
DR and D∆ respectively (steps 5 and 6 of Algorithm 1 in the main text). Adding a small number of links to GR changes
a small amount of off-diagonal entries from 0 in LR to −1/

√
k∆
i k

∆
j in the resulting matrix L̃R, where k∆

i stands for the
degrees of nodes in the perturbation graph ∆G, which are typically low. As a result, these changes are of the order of the
large majority of values in LR, since most nodes are low degree, and would only affect a small number of entries.

In fact, this normalization protocol is a way to ensure that the role of hubs is not overemphasized. This can be
understood by thinking what happens when both LR and ∆L are normalized by the same degree matrix, for instance,
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DR. In that case, if the perturbation set contains links attached to hubs—this would be a very common situation since the
observed links are randomly split in the remaining and perturbation sets—a number of off-diagonal entries would change
from 0 in LR to −1/

√
kRi k

R
j in the resulting matrix L̃R, where kRi stands for the degrees of nodes in GR. These degrees

have typically large values for hubs, so that the change would be from 0 to a value that indicates the presence of a hub, a
very strong signal in the context of the whole matrix even if the numerical value would be smaller as compared with the
normalization provided by D∆. In addition, normalizing the graph Laplacian of ∆G by its own degrees yields a resulting
∆L which is congruent with the structure of this graph, while it is not the case when normalization is done by DR. Hence,
in our framework, LR is perturbed using the normalized graph Laplacian associated with the structure of perturbation
graph ∆G. In summary, a small perturbation means that a small number of entries in LR are affected by a change that is
typical of low degree nodes, the most frequently found in complex networks, and not by a change associated to magnitudes
typical of hubs, which are very rare events in networks and so in their matrix representation.

Moreover, in the normalized matrix ∆L achieved by DR in which the diagonal and off-diagonal elements correspond-
ing to the links in the perturbation set are k∆

i /k
R
i and−1/

√
kRi k

R
j respectively, inhomogeneity of the degree inGR make the

resulting ∆L to be inhomogeneous. On the other hand, when ∆L is obtained using D∆, the diagonal elements associated
with the links in the perturbation sets are always 1 and the off-diagonal elements are −1/

√
k∆
i k

∆
j . Since the degree of

nodes in ∆G, k∆
i , are low and close to each other, the elements of ∆L are homogeneous. A perturbation matrix with

homogeneous elements ensures that the randomly selected perturbation links will play similar roles in the perturbation
process.
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Fig. S2: (a) A small network of 30 nodes randomly divided into remaining graph GR containing solid blue links and
perturbation one ∆G including orange dashed links. (b) The normalized graph Laplacian of ∆G, ∆L, when D∆ −∆A is
normalized using D∆. (c) The resulting ∆L when normalization is done using DR.

To better clarify this issue, we consider a simple example. Fig. S2(a) shows a network of 30 nodes with a hub in which
a small fraction of the links shown by dashed lines has been randomly selected to constitute the perturbation graph ∆G.
Panels (b) and (c) are the heatmap visualizations of the normalized Laplacian matrices corresponding to ∆G, ∆L, when
D∆ −∆A is normalized using D∆ and DR, respectively.

Panel (b) highlights that the normalization provided by D∆ yields a ∆L with homogeneous elements corresponding
to the links in the perturbation set. While in the case of using DR in panel (c), the resulting ∆L is not homogeneous, and
therefore the changes imposed by the perturbation links to LR are affected depending on whether they are attached to
hubs or to low degree nodes. Moreover, in panel (c), the value of the diagonal element corresponding to the node number
11 (shown by blue as it is out of the range of the heatmap) is equal to 2 which exceeds the allowed range of values for the
elements of normalized graph Laplacians.

Now, in the following, we evaluate how different normalization approaches affect the performance of LPM method. To
this end, we use three alternative normalization schemes in steps 5 and 6 of Algorithm 1 in the main text to obtain the
normalized Laplacian matrices for the remaining and perturbation graphs.

The first normalization method employs the degree matrix of the observed network D to normalize DR − AR and
D∆ −∆A. This being so, both DR −AR and D∆ −∆A are normalized by the same degree matrix. In this case, steps 5
and 6 in Algorithm 1 are substituted with

LR = D−1/2(DR −AR)D−1/2, (S7)
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Fig. S3: The average AUC and precision of LPM link prediction methods and their counterparts employing Eqs. S7 and S8
to normalize remaining and perturbation graph Laplacians denoted by -N1 suffix.

0.00 0.05 0.10 0.15 0.20 0.25
0.85

0.90

0.95

1.00

A
U

C

Pinv-Per Cos-Per

(a)   Lesmis
MFA-Per

MFA-Per-N2Pinv-Per-N2 Cos-Per-N2

0.00 0.05 0.10 0.15 0.20 0.25
0.7

0.8

0.9

(b)   WTW

0.00 0.05 0.10 0.15 0.20 0.25
0.95

0.96

0.97

0.98

0.99

1.00
(c)   Netscience

0.00 0.05 0.10 0.15 0.20 0.25
0.0

0.2

0.4

0.6

0.8

Fraction of Removed Links

P
re

c
is

io
n

(d)

0.00 0.05 0.10 0.15 0.20 0.25
0.0

0.1

0.2

0.3

Fraction of Removed Links

(e)

0.00 0.05 0.10 0.15 0.20 0.25
0.0

0.1

0.2

0.3

0.4

0.5

Fraction of Removed Links

(f)

Fig. S4: The average AUC and precision of LPM link prediction methods and their counterparts employing Eqs. S9 and S10
to normalize remaining and perturbation graph Laplacians denoted by -N2 suffix.

∆L = D−1/2(D∆ −∆A)D−1/2. (S8)

Fig. S3 compares the average AUC and precision of LPM link prediction methods with the corresponding perturbative
Laplacian-based link prediction counterparts utilizing Eqs. S7 and S8. These link prediction schemes are denoted by the
suffix -N1.

In the second normalization approach, DR−AR and D∆−∆A are normalized by the same degree matrix corresponding
to the remaining network DR. As a result, the normalization steps of LPM algorithm are implemented using
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Fig. S5: The average AUC and precision of LPM link prediction methods and their counterparts employing Eqs. S11 and
S12 to normalize remaining and perturbation graph Laplacians denoted by -N3 suffix

LR = D−1/2
R (DR −AR)D−1/2

R , (S9)

∆L = D−1/2
R (D∆ −∆A)D−1/2

R . (S10)

Fig. S4 illustrates the performance of the proposed LPM link prediction methods in the main text with the corresponding
perturbative Laplacian-based counterparts that employ the normalizations in Eqs. S9 and S10, distinguished by the suffix
-N2.

Finally, in the third scheme, normalization is done such that the sum of the normalized Laplacians associated with
remaining and perturbation graphs LR + ∆L gives exactly the normalized Laplacian of observed networks L, i.e., L =
LR + ∆L. Therefore, the normalization is done as

LR = D−1/2
R (DR −AR)D−1/2

R , (S11)

∆L = (D−1/2(D−A)D−1/2)−D−1/2
R (DR −AR)D−1/2

R , (S12)

where D and A are the degree and adjacency matrices of the observed network. The results of applying this normalization
approach to LPM method are shown in Fig. S5, where the suffix -N3 identifies the new schemes.

On the whole, Figs. S3, S4 and S5 highlights that although the combination of the structural perturbation theory with
each of the three normalization approaches discussed above leads to link prediction methods with superior performance
than standard Laplacian-based schemes (the performance of the standard methods has been shown in Figs. 3 and 4 (b,e,h)
in the main text), the normalization of the remaining and perturbation graphs with their own degree matrices that is used
in the proposed LPM algorithm yields the best accuracy.

S.3 NETWORK MODELS

In this section, we outline the probabilistic network models employed in the main text to evaluate the performance of
LPM link prediction methods. Furthermore, we investigate the dependency of LPM method performance on the structural
properties of network models by varying model parameters values in the typical ranges observed in real networks.
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S.3.1 Soft Configuration Model (sCM)

In sCM [S6], after assigning each node i an expected degree κi, the node pairs are connected with a probability given by

pij =
µκiκj

1 + µκiκj
, (S13)

where the free parameter µ controls the number of the links in the generated network. In a network of N nodes and
average degree 〈k〉 when µ is set to 1

〈k〉N , the degree of each node i in the resulting network ki is approximately equal to
its expected one, i.e., ki ≈ κi.

S.3.2 S1 model

In the S1 model [S7], every node i is specified by latent variables (κi, θi), where κi is the node’s hidden degree sampled
from a probability density function ρ(κ), and θi is its angular coordinate sampled uniformly at random from [0, 2π] so as
to map the nodes to a circle of radius R = N

2π . The node pairs are then connected with a probability given by

pij =
1

1 + (
R∆θij
µκiκj

)β
, (S14)

where ∆θij = π− |π− |θi − θj ||, as well as, β and µ are free parameters controlling the level of clustering and the average
degree of the resulting network, respectively.

S.3.3 Degree-corrected Stochastic Block Model (dc-SBM)

In dc-SBM [S8], each node i is characterized by an expected degree κi and a group assignment gi. In a network with Nb
blocks, the number of the connections between group pairs is controlled by a symmetric Nb ×Nb matrix of parameters ω
computed as

ωrs = (1− λ)ωrandomrs + λωplantedrs , (S15)

where ωrandom defines a fully random network with a specific degree sequence and without any group structure calculated
as ωrandomrs = κ′rκ

′
s/2|E| in which κ′r is the sum of the node expected degrees in group r and |E| is the total number of

links in the network. Moreover, ωplanted specifies a network with group structure, which in the simplest way, can be a
diagonal matrix of parameters κ′ representing a network with isolated communities. Furthermore, the free parameter λ
makes a balance between these two types of structures. The number of links connecting two nodes of dc-SBM networks
follows a Poisson distribution with mean of θiθjωgigj , where θi = κi/κ

′
gi . As the probability of occurring multi-edges is

low in the sparse-network limit, θiθjωgigj can estimate the connection probability of node pairs as well. In this paper, to
avoid values greater than 1, the connection probability of dc-SBM is computed as

pij =
θiθjωgigj

1 + θiθjωgigj
. (S16)

S.3.4 Experimental results for network models

In this section, we compare the performance of different LPM link prediction methods with their unperturbed Laplacian-
based counterparts in synthetic networks of the sCM, S1 and dc-SBM ensembles. Fig. S6 shows the area under the receiver
operating characteristic curve (AUC) and precision of LPM link prediction techniques and their unperturbed versions as a
function of fraction of removed links for sCM networks when exponents γ of the power-law degree distribution is varied
in the range of [2, 3]. Analogous results are shown in Figs. S7 and S8 for synthetic S1 networks with different values of
parameter γ and various level of clustering β. Finally, Figs. S9 and S10 highlights the same results for synthetic networks
generated by the dc-SBM model with increasing number of equiprobable blocks Nb and values of γ. In addition, Table. 1
compares the average AUC of LPM link prediction techniques with the presented baseline schemes in the network models.

S.4 REAL-WORLD NETWORKS

In this section, we investigate the performance of LPM and Laplacian-based link prediction methods in more real-world
networks, as illustrated in Figs. S11 and S12. These figures show that LPM link prediction methods (except ACT-Per)
surpass their standard Laplacian-based link prediction counterparts in almost all real-world networks, and they beat SPM
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Fig. S6: The average AUC and precision of LPM and the corresponding unperturbed Laplacian-based link prediction
methods as a function of the fraction of removed links q for synthetic sCM networks. For each value of the power-law
degree distribution exponent γ increased from left to right, we have generated 10 different networks with N = 300 nodes
and the average node degree of 〈k〉 = 10. For every network and each value of q, we have also constructed 10 disjoint
training and probe sets. In all the plots, the black dashed curves represent the average performance of SPM.

TABLE 1: Performance of link prediction methods measured by AUC for synthetic and real networks. The probe sets
contain a q = 0.1 fraction of the links in the complete networks and the presented results are the average of 10 independent
runs. In all the netwok models, we have set γ = 2.2. In S1, we have fixed β = 1.5, and in dc-SBM, Nb = 14 and λ = 0.5.
For LPM link prediction methods, AUC values of their unperturbed counterparts are reported in parentheses.

Networks CN RA AA CH FBM SPM Pinv-Per Cos-Per MFA-Per Cos-CN

sCM 0.731 0.732 0.736 0.655 0.787 0.762 0.811 (0.675) 0.807 (0.531) 0.786 (0.690) 0.741
S1 0.855 0.870 0.869 0.768 0.879 0.858 0.882 (0.846) 0.883 (0.808) 0.899 (0.858) 0.873

dc-SBM 0.727 0.735 0.737 0.622 0.774 0.727 0.784 (0.712) 0.781 (0.607) 0.781 (0.721) 0.739
Iceland 0.862 0.885 0.885 0.601 0.879 0.807 0.885 (0.777) 0.881 (0.772) 0.850 (0.846) 0.880

Word Adjacency 0.677 0.676 0.678 0.570 0.726 0.731 0.763 (0.671) 0.758 (0.608) 0.720 (0.686) 0.681
Haggle 0.960 0.961 0.961 0.943 0.965 0.954 0.974 (0.890) 0.974 (0.905) 0.957 (0.926) 0.968
Tortoise 0.886 0.887 0.887 0.722 0.892 0.870 0.916 (0.890) 0.917 (0.910) 0.897 (0.888) 0.876
FB-Food 0.911 0.915 0.914 0.769 0.935 0.939 0.958 (0.916) 0.960 (0.955) 0.947 (0.945) 0.914

in some of them. Table. 1 also compares the performance of LPM with the state-of-the-art link prediction schemes measured
by AUC in real-world network. A brief description of the networks used in these experiments are provided in the following
section.

In the cases in which LPM outperforms SPM, the improvement has its roots in structural information encoded in the
graph Laplacian that emerges when the inverse or pseudo-inverse is applied. To show this, we have used the elements
of the perturbed graph Laplacian L̃, without applying the inverse or pseudo-inverse operator, as the source of similarity
indices for link prediction. Since Laplacian matrices characterize the links in graphs by negative values, we decided to use
the absolute values of the elements in the perturbed Laplacian matrix corresponding to unconnected node pairs as the
similarity scores (experimental results, not shown here, reveal that using the real negative values of L̃ elements gives very
low accuracy). We have implemented two versions of this scheme based on the normalized and the unnormalized graph
Laplacians called |NLAP | and |UnLAP |, respectively.

Fig. S13 compares the performance of SPM perturbing the adjacency matrix with |NLAP | and |UnLAP |which similarly
perturb the normalized and unnormalized graph Laplacians in some real-world networks. Although, the three methods
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Fig. S7: The average AUC of LPM and the corresponding unperturbed Laplacian-based link prediction methods as a
function of the fraction of removed links q for synthetic S1 networks. The number of nodes in the networks is N = 300 and
the average node degree is 〈k〉 = 10. Parameter β controlling the level of clustering is increased from up to down and the
power-law degree distribution exponent γ is incremented from left to right. For every ensemble characterized by specific
γ and β, we have generated 10 different networks, and for every network and each value of q, we have also constructed 10
disjoint training and probe sets. In all the plots, the black dashed curves represent the average AUC of SPM.

employ the same source of structural information for link prediction, |NLAP | and |UnLAP | usually exhibit inferior
accuracy than SPM. It means that when Laplacian matrix is considered as the structural representation of a network, using
merely the absolute values of perturbed graph Laplacian elements associated with potential links does not lead to effective
link prediction methods. However, LPM link prediction techniques that extract more structural information encoded in
the pseudo-inverse of the perturbed graph Laplacian mapping nodes to an appropriate feature space and computing node
vectors inner products or the cosine of the angle between them, can improve the performance of |NLAP | and |UnLAP |
as also depicted in Fig. S13. In other words, in spite of using the same perturbation procedure in |NLAP |, |UnLAP | and
LPM method, the improvement only happens when extra information from the graph Laplacian is exploited.
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Fig. S8: The average precision of LPM and the corresponding unperturbed Laplacian-based link prediction methods as a
function of the fraction of removed links q for synthetic S1 networks. The number of nodes in the networks is N = 300 and
the average node degree is 〈k〉 = 10. Parameter β controlling the level of clustering is increased from up to down and the
power-law degree distribution exponent γ is incremented from left to right. For every ensemble characterized by specific
γ and β, we have generated 10 different networks, and for every network and each value of q, we have also constructed 10
disjoint training and probe sets. In all the plots, the black dashed curves represent the average precision of SPM.

S.4.1 Data description

Here, the performance of LPM link prediction methods has been assessed in a set of real-world networks from disparate
area including male homosexual relationships in Iceland [S9] (Iceland), adjacent common adjectives and nouns in the novel
David Copperfield [S10] (Word Adjacency), people’s communications masured by wireless devices [S11] (Haggle), neural
network in a type of worm called Caenorhabditis elegans or C.elegans [S12] (Neural), face to face contacts between the
participants of the exhibition INFECTIOUS: STAY AWAY 2009 [S13] (Infectious), metabolic network of C.elegans [S14]
(Metabolic), social network of dessert tortoises [S15] (Tortoise), mutually liked blue verified Facebook pages in food
category [S16] (FB-Food) and hyperlinks between political weblogs [S17] (Polblogs).
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Fig. S9: The average AUC of LPM and the corresponding unperturbed Laplacian-based link prediction methods as a
function of the fraction of removed links q for synthetic dc-SBM networks. The number of nodes in the networks is
N = 300, the average node degree is 〈k〉 = 10 and parameter λ making a balance between random and group structures
has been fixed to λ = 0.5. The number of equiprobable blocks Nb is increased from up to down and the power-law degree
distribution exponent γ is incremented from left to right. For every ensemble characterized by specific γ and Nb, we have
generated 10 different networks, and for every network and each value of q, we have also constructed 10 disjoint training
and probe sets. In all the plots, the black dashed curves represent the average AUC of SPM.

Table. 2 also reports the basic topological characteristics of all the real-world networks used in this paper. In all the
experiments, undirected unweighed versions of the networks are used by ignoring self loops, the directions and weights
of links, and replacing multi-edges with a single link in case of existence. In addition, for the networks with more than one
component the giant connected component is considered as the complete network. In this case, the number of nodes and
links in the orginal network are shown in the parenthesis in Table. 2. These networks can be downloaded from the Koblenz
Network Collection [S18] and the Network Data Repository [S19].
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Fig. S10: The average precision of LPM and the corresponding unperturbed Laplacian-based link prediction methods as
a function of the fraction of removed links q for synthetic dc-SBM network. The number of nodes in the networks is
N = 300, the average node degree is 〈k〉 = 10 and parameter λ making a balance between random and group structures
has been fixed to λ = 0.5. The number of equiprobable blocks Nb is increased from up to down and the power-law degree
distribution exponent γ is incremented from left to right. For every ensemble characterized by specific γ and Nb, we have
generated 10 different networks, and for every network and each value of q, we have also constructed 10 disjoint training
and probe sets. In all the plots, the black dashed curves represent the average precision of SPM.
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Fig. S11: AUC values of LPM and the corresponding unperturbed Laplacian-based link prediction methods as a function
of the fraction of removed links q. For each real network and each value of q, we have generated 10 different training and
probe sets. In all the plots, the black dashed curves represent the average AUC of SPM.
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Fig. S12: Precision values of LPM and the corresponding unperturbed Laplacian-based link prediction methods as a
function of the fraction of removed links q. For each real network and each value of q, we have generated 10 different
training and probe sets. In all the plots, the black dashed curves represent the average precision of SPM.
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Fig. S13: The average AUC and precision of LPM link prediction methods versus |UnLAP | and |NLAP | schemes
employing the elements of perturbed unnormalized and normalized graph Laplacian (without applying the pseudo-inverse
operator) as similarity scores of node pairs, respectively. The black dashed curves represent the average performance of
SPM.

TABLE 2: The basic topological charachteristics of the real-world networks. N : number of nodes, |E|: number of links,
〈k〉: average degree, C : clustering coefficient [S12], H : degree heterogeniety measured as H = 〈k2〉

〈k〉2 , r: assortative
coefficient [S20] and 〈d〉: average shortest distance. For the networks with more than one component, N and |E| of
the original networks are shown in the parenthesis.

Networks N |E| 〈k〉 C H r 〈d〉 Ref

Karate 34 78 4.588 0.571 1.693 -0.476 2.408 [S21]
Lesmis 77 254 6.597 0.573 1.827 -0.165 2.641 [S22]

Polbooks 105 441 8.4 0.488 1.421 -0.128 3.079 [S23]
ACM2009 113 2196 38.867 0.535 1.223 -0.123 1.656 [S13]

WTW 189 550 5.82 0.573 4.281 -0.299 2.491 [S24]
CongressVote 219 521 4.758 0.255 2.365 -0.340 3.315 [S25]

USAir 332 2126 12.807 0.625 3.464 -0.208 2.738 [S26]
Netscience 379 (1589) 914 (2742) 4.823 0.741 1.663 -0.082 6.042 [S10]

Email 1133 5451 9.622 0.220 1.942 0.078 3.606 [S27]
Iceland 75 114 3.04 0.287 2.75 -0.401 3.2 [S9]

Word Adjacency 112 425 7.59 0.173 1.815 -0.13 2.536 [S10]
Haggle 274 2124 15.504 0.633 3.656 -0.474 2.424 [S11]
Neural 297 2148 14.465 0.292 1.801 -0.163 2.455 [S12]

Infectious 410 2765 13.488 0.456 1.388 0.226 3.631 [S13]
Metabolic 453 2025 8.940 0.647 4.485 -0.226 2.664 [S14]
Tortoise 496 (787) 984 (1713) 3.968 0.336 1.612 0.345 7.933 [S15]
FB-Food 620 2091 6.745 0.331 2.952 -0.032 5.089 [S16]
Polblogs 1222 16714 27.355 0.32 2.971 -0.221 2.738 [S17]
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